思路
状态压缩
怎么压缩? 用数组存下一个数字来代表二进制数
状态表示
一个数组,表示到当前这个状态的包数最小的选法
状态计算
遍历所有状态
- 对每个包单选的状态赋值
- 单选的状态赋值后,要是遍历到的状态还没有找到过,证明还没有包可以构成那个状态,跳过
- 当当前状态的值,比原先找到的值更小,或是找到一个还没有找过的状态,就赋值
实现
#include <iostream>
#include <algorithm>
#include <set>
#include <cstring>
using namespace std;
const int N = 110;
int d[N];
int dp[1 << 20];
int n, M, k;
int size(int d)
{
int sum = 0;
while(d)
{
if(d & 1)
sum ++;
d >>= 1;
}
return sum;
}
bool cmp1(int a, int b)
{
return a > b;
}
bool cmp2(int a, int b)
{
return size(a) > size(b);
}
int main()
{
cin >> n >> M >> k;
for(int i = 0; i < n; i ++)
{
for(int j = 0; j < k; j ++)
{
int x;
cin >> x;
d[i] = d[i] | (1 << (x-1));
}
//cout << size(d[i]) << endl;
}
sort(d, d + n, cmp1);
//合并相同和包含
int t = n;
for(int i = 0; i < n; i ++)
if(d[i])
for(int j = i+1; j < n; j ++)
{
if(d[j] && (d[i] | d[j]) == d[i])
{
d[j] = 0;
t --;
//cout << t << endl;
}
}
//for(int i = 0; i < n; i ++)
//cout << d[i] << endl;
sort(d, d + n, cmp2);
n = t;
//状态压缩dp
memset(dp, -1, sizeof dp);
//初值
dp[0] = 0;
int m = 1 << M;
//cout << m << endl;
for(int i = 0; i < n; i ++)
{
for(int st = 0; st < m; st ++)
{
//如果当前状态是没有过的
if(dp[st] == -1) continue;
int nst = st | d[i];
//如果选了一包后,当前值没有找到过,或是之前找到的比这种差
if(dp[nst] == -1 || dp[nst] > dp[st] + 1) dp[nst] = dp[st] + 1;
}
}
//for(int i = 0; i < m; i++)
// cout << dp[i] << endl;
cout << dp[m-1] << endl;
return 0;
}
实现中加了之前错误尝试的遗物,可能大概或许会快一些
//错误的尝试,超时
#include <iostream>
#include <algorithm>
#include <set>
#include <cstring>
using namespace std;
const int N = 110;
struct Candy{
set<int> kind;
bool operator > (const Candy &w) const{
return kind.size() > w.kind.size();
}
bool operator == (const Candy &w) const{
return kind == w.kind;
}
}C[N];
bool cmp(Candy &a, Candy &b)
{
return a > b;
}
bool check(Candy a, Candy b)
{
for(int i = 0; i < b.kind.size(); i ++)
{
//if a 包含 b 去掉b
}
}
bool st[N];
bool fin[N];
int n, M, k;
int m = 0x3f3f3f3f;
bool dfs(int z, int b, Candy t)
{
if(b + 1 >= m && t.kind.size() < M) return false;
if(t.kind.size() == M)
{
m = b;
return true;
}
for(int i = z; i < n; i ++)
{
int j = i + 1;
while(C[j] == C[i] && j < n) j ++;
i = j;
if(st[i] || fin[i]) continue;
st[i] = true;
Candy tmp = t;
tmp.kind.insert(C[i].kind.begin(), C[i].kind.end());
dfs(i, b + 1, tmp);
j = i + 1;
while(C[j] == C[i] && j < n) j ++;
i = j - 1;
st[i] = false;
}
return false;
}
int main()
{
cin >> n >> M >> k;
for(int i = 0; i < n; i ++)
{
for(int j = 0; j < k; j ++)
{
int x;
cin >> x;
C[i].kind.insert(x);
}
}
sort(C, C + n, cmp);
for(int i = 0; i < n; i ++)
{
memset(st, 0, sizeof st);
st[i] = true;
dfs(i, 1, C[i]);
fin[i] = true;
}
if(m != 0x3f3f3f3f) cout << m << endl;
else cout << "-1" << endl;
}
----------------------------------------------------------
//错误代码二 二进制也是不行,剪枝难剪,傻逼也不会剪
#include <iostream>
#include <algorithm>
#include <set>
#include <cstring>
using namespace std;
const int N = 110;
int d[N];
bool st[N];
bool fin[N];
int n, M, k;
int m = 0x3f3f3f3f;
int size(int d)
{
int sum = 0;
while(d)
{
if(d & 1)
sum ++;
d >>= 1;
}
return sum;
}
bool cmp1(int a, int b)
{
return a > b;
}
bool cmp2(int a, int b)
{
return size(a) > size(b);
}
bool dfs(int z, int b, int dt)
{
int sum = size(dt);
if(b + 1 >= m && sum < M) return false;
if(sum == M)
{
m = b;
return true;
}
for(int i = z; i < n; i ++)
{
int big = 0, idx = 0;
for(int j = i + 1; j < n; j ++)
if(size(d[i] | d[j]) > big && !st[j]) idx = j;
i = idx;
st[i] = true;
int tmp = dt | d[i];
dfs(z, b + 1, tmp);
st[i] = false;
}
return false;
}
int main()
{
cin >> n >> M >> k;
for(int i = 0; i < n; i ++)
{
for(int j = 0; j < k; j ++)
{
int x;
cin >> x;
d[i] = d[i] | (1 << x);
}
//cout << size(d[i]) << endl;
}
sort(d, d + n, cmp1);
//合并相同和包含
int t = n;
for(int i = 0; i < n; i ++)
if(d[i])
for(int j = i+1; j < n; j ++)
{
if(d[j] && (d[i] | d[j]) == d[i])
{
d[j] = 0;
t --;
//cout << t << endl;
}
}
//for(int i = 0; i < n; i ++)
// cout << d[i] << endl;
sort(d, d + n, cmp2);
n = t;
for(int i = 0; i <= n; i ++)
{
//cout << size(d[i]) << endl;
memset(st, 0, sizeof st);
st[i] = true;
dfs(i, 1, d[i]);
fin[i] = true;
}
if(m != 0x3f3f3f3f) cout << m << endl;
else cout << "-1" << endl;
}